Simultaneous rational approximation to binomial functions
نویسندگان
چکیده
منابع مشابه
Simultaneous Rational Approximation to Binomial Functions
We apply Padé approximation techniques to deduce lower bounds for simultaneous rational approximation to one or more algebraic numbers. In particular, we strengthen work of Osgood, Fel’dman and Rickert, proving, for example, that max {∣∣∣√2− p1/q∣∣∣ , ∣∣∣√3− p2/q∣∣∣} > q−1.79155 for q > q0 (where the latter is an effective constant). Some of the Diophantine consequences of such bounds will be d...
متن کاملBest Simultaneous Approximation on Small Regions by Rational Functions
We study the behavior of best simultaneous (lq , Lp)-approximation by rational functions on an interval, when the measure tends to zero. In addition, we consider the case of polynomial approximation on a finite union of intervals. We also get an interpolation result.
متن کاملApproximation by Rational Functions
Making use of the Hardy-Littlewood maximal function, we give a new proof of the following theorem of Pekarski: If f' is in L log L on a finite interval, then f can be approximated in the uniform norm by rational functions of degree n to an error 0(1/n) on that interval. It is well known that approximation by rational functions of degree n can produce a dramatically smaller error than that for p...
متن کاملFuzzy Best Simultaneous Approximation of a Finite Numbers of Functions
Fuzzy best simultaneous approximation of a finite number of functions is considered. For this purpose, a fuzzy norm on $Cleft (X, Y right )$ and its fuzzy dual space and also the set of subgradients of a fuzzy norm are introduced. Necessary case of a proved theorem about characterization of simultaneous approximation will be extended to the fuzzy case.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1996
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-96-01480-8